

EOS AM-1 Mission Operations Review

Spacecraft Operations Development

TOM SVOBODA
Spacecraft Operations Engineering
Lockheed Martin Missiles and Space
Valley Forge, PA

Email: tsvoboda@eos.vf.mmc.com

Spacecraft Operations Engineering

Support mission operations through Launch + 14 months by providing:

- Flight operations systems engineering
- Spacecraft to ground system interface engineering
- Spacecraft operations documentation
- Engineering support to FOT for:
 - Procedure and display development
 - Training and simulations
 - Performance analysis and verification
- On-site support at GSFC beginning in 1998
- Off-site support by LMMS through Launch + 14 months

Spacecraft Operations Development Schedule

Spacecraft Operations Documentation

EOS AM-1 Spacecraft Operations Documentation:

- Operations Concept
- Flight Systems Manual
- Flight System Plan
- Flight System Operations Manual
- On-Orbit Operations Manual
- Flight Software Users Guide
- Instrument Operations ICDs
- Command and Telemetry definitions
- Spacecraft Trend Parameters/ Limited Life Items List
- FOT Training Materials

Flight Systems Manual

Delivered August 1996, update November 1997

Describes the design and capabilities of the AM-1 subsystems

- Configuration and modes
- Component design(s)
- Capabilities and interfaces
- Command and telemetry
- Operations constraints

Flight System Plan

Draft November 1996, Final March 1998

Documents the AM-1 mission timeline from launch through transition to nominal science operations

- Mission phases
- Critical L&EO events: initial communications, earth acquisition, array and antenna deployments, mission orbit acquisition
- Spacecraft activation timeline
- Subsystem and instrument checkout plans
- Transition to normal science

Flight System Operations Manual

Draft March 1997, Final October 1997

Describes the nominal, special, and contingency operations of the AM-1 subsystems

Provides a description of each unique subsystem operation

- Initial/prerequisite conditions
- Command sequence and timing
- Verification telemetry
- Final conditions

Provided to the FOT for use in developing flight Procs

Provides a list of contingency operations

Flight System Operations Manual Development Process

Operations Flow - Example EPS - change V/T level

value**Commends** styre F**wathin** Dがacketasients 1 sample for HAS and 8 sample **REVESED BY:**for**Eric Mover**

Operations Flow - Example SAA Rate Change

SVOBODA-10

On-Orbit Operations Manual

Draft November 1997, Final April 1998

Provided to FOT for development of spacecraft activities and SOPs

Describes spacecraft nominal, special, and contingency operations

- Initial / prerequisite conditions
- Planning and scheduling requirements
- Subsystem operations sequencing and timing
- Verification requirements (telemetry monitoring and/or analysis)
- Final conditions

Provides decision trees for fault and anomaly detection, isolation and recovery

SVOBODA-11

On-Orbit Operations Manual Development Process

Instrument Operations ICDs

- Combine the Command and Telemetry ICD with the Instrument Flight Operations Understanding
- Documents the interface between the Instrument Operations Teams (IOT) and the FOT
 - Roles and responsibilities
 - Standard operating procedures
 - Operational agreements
- Describes instrument nominal, special, and contingency operations
 - Operational characteristics and constraints
 - Command Proc, Activity, RTCS and TMON descriptions
 - Command and Telemetry definitions*
- Signatories of the OICD include:
 - EOS AM and ESDIS Projects
 - Instrument, Spacecraft and ECS contractors
 - Instrument PI/TL

*ASTER Command and Telemetry definition contained within a separate C&T ICD

OICD Status

Instrument	Current Status	Signature
ASTER	Initial version in final update	December 1996
CERES	revision B in-process	February 1997
MISR	revision C in-process	December 1996
MODIS	revision B in-process	February 1997
MOPITT	revision A in-process	April 1997

SVOBODA- 14

Spacecraft Operations Documentation Development

Spacecraft Operations Tools

Spacecraft Simulator (SSIM) - July 1997

Dynamic simulation of spacecraft bus for use in training simulations and procedure validation

Spacecraft Analysis System (SAS) - January 1998

Suite of subsystem performance analysis tools for use in onorbit performance verification and long term trending

Software Development Facility (SDF)- available now

Software and hardware tools for design, code, test, and maintain spacecraft flight software

Flight Software Tools - July 1997

Suite of tools provided to the SDF and FOT for operation of the flight software

Spacecraft Simulator

From FSTB

- CTIU and SCC (engineering models)
- Hardware Models
 - » Deployment of SAA and HGA
 - » GN&C components (not ACE)
 - » Propulsion
 - » S-band transponder
- Dynamic Models of the external environment, navigation and TDRS
- Flight Software Model of Earth Acquisition control, magnetic unloading and HGA control
- Developed for SSIM
 - Complete telemetry responses to commands
 - Real time commanding support
 - Basic Power and Thermal Models
 - Basic ACE (Basic SHDP)
 - Standby CTIU
 - SSR & Science Formatting Equipment (SFE)

Spacecraft Analysis System

- Developed by Subsystem and Test engineers during spacecraft integration and test
- Suite of subsystem performance analysis tools used for:
 - On-orbit calibrations
 - » HGA pointing
 - » Propellant measuring
 - Subsystem/component performance verification
 - Long term performance trending

Software Development Facility

- Development environment for the AM-1 Flight Software
 - Software development tools
 - FSTB
- Used by
 - Software engineering for FSW development, code and test
 - Sustaining engineering for FSW maintenance
- Home of the master FSW image through Launch + 90 days
- Connected with the SCS
- Connected with the code 512 SDVF

Flight Software Maintenance Support

- •LMMS will retain FSW Maintenance responsibility through Launch +90 days
- •SDF in VF will be maintained through Launch +90 days
- Prior to Spacecraft shipment
 - Software changes will be developed on the SDF in VF and transferred to the spacecraft via SCS
 - Deliveries of source code and executables will be made to Code 512 for the GSFC-FSTB to support IV&V and start up of software maintenance
- Prior to launch
 - Software changes will be developed on the SDF in VF and FTP'd to the SCS at Vandenberg Air Force Base (VAFB)
 - Changes will be delivered to the GSFC-FSTB

Flight Software Maintenance Support (Cont'd)

- Post launch until 90 days
 - Software changes will be developed on the SDF in VF and transferred to the EOC as a memory load, via the VF IS
 - In parallel, memory loads and source code changes will be transferred to the GSFC-FSTB
- Launch +90 days
 - Responsibility transfers to Code 512
 - Software changes will be developed on the GSFC-FSTB and transferred to the EOC as a memory load, via IST

FSW Maintenance EOS AM-1 at LMMS VF

FSW Maintenance EOS AM-1 at VAFB

FSW Tools

- TMON Builder
- Stored Command Load Formatter ATC and RTCS
- Program Load Formatter SCC SUROM and SCC FSW
- EEPROM Load Formatter CTIU firmware and BUT
- Generic Table Builder for flight software
- Command and Telemetry Bus table builder
 - BUT for CTIU
 - Telemetry Decom for SCC
- Generic cyclic redundancy check (CRC) calculator
- Activity Log Decoder

FOT Training

Spacecraft Operations and Subsystem Engineering will train the FOT for operation of the EOS AM-1 spacecraft, simulator and analysis system, by providing:

- Training materials
 - Presentation charts
 - Operations documentation
 - Design reference documents
- Lectures
- Tutoring in the EOC
- Participation in training simulations
- Opportunities for FOT participation in Spacecraft tests